로그인정보 입력 영역

내서재

더보기

로그인 후 이용가능합니다.

  • 다운로드
  • 자료대출안내

추천도서

더보기

컨텐츠상세보기

밑바닥부터 시작하는 딥러닝 2 (커버이미지)
밑바닥부터 시작하는 딥러닝 2
  • 평점평점점평가없음
  • 저자사이토 고키 지음, 개앞맵시 옮김 
  • 출판사한빛미디어 
  • 출판일2019-05-31 
  • 등록일2019-06-25 
  • 파일포맷 epub 
  • 파일크기11 M  
  • 지원기기 PC PHONE TABLET

    아이폰, 아이패드, 안드로이드, 태블릿, PC

책소개

『밑바닥부터 시작하는 딥러닝』에서 다루지 못했던 순환 신경망(RNN)을 자연어 처리와 시계열 데이터 처리에 사용하는 딥러닝 기술에 초점을 맞춰 살펴본다. 8장 구성으로 전체를 하나의 이야기처럼 순서대로 읽도록 꾸몄다. 전편에서 배운 내용을 요약한 신경망 복습을 첫 장에 배치하여 신경망과 파이썬 지식을 어느 정도 갖춘 분이라면 전편을 읽지 않아도 무리 없이 따라올 수 있도록 배려했다.

저자소개

1984년 나가사키 현 쓰시마 태생. 도쿄공업대학교 공학부를 졸업하고 도쿄대학대학원 학제정보학부 석사 과정을 수료했다. 현재는 기업에서 컴퓨터 비전과 기계학습 관련 연구.개발에 매진하고 있다. 오라일리재팬에서 『실천 파이썬 3』, 『컴퓨터 시스템의 이론과 구현』, 『실천 기계학습 시스템』 등을 번역했다.

목차

CHAPTER 1 신경망 복습
__1.1 수학과 파이썬 복습
__1.2 신경망의 추론
__1.3 신경망의 학습
__1.4 신경망으로 문제를 풀다
__1.5 계산 고속화
__1.6 정리

CHAPTER 2 자연어와 단어의 분산 표현
__2.1 자연어 처리란
__2.2 시소러스
__2.3 통계 기반 기법
__2.4 통계 기반 기법 개선하기
__2.5 정리

CHAPTER 3 word2vec
__3.1 추론 기반 기법과 신경망
__3.2 단순한 word2vec
__3.3 학습 데이터 준비
__3.4 CBOW 모델 구현
__3.5 word2vec 보충
__3.6 정리

CHAPTER 4 word2vec 속도 개선
__4.1 word2vec 개선 ①
__4.2 word2vec 개선 ②
__4.3 개선판 word2vec 학습
__4.4 word2vec 남은 주제
__4.5 정리

CHAPTER 5 순환 신경망(RNN)
__5.1 확률과 언어 모델
__5.2 RNN이란
__5.3 RNN 구현
__5.4 시계열 데이터 처리 계층 구현
__5.5 RNNLM 학습과 평가
__5.6 정리

CHAPTER 6 게이트가 추가된 RNN
__6.1 RNN의 문제점
__6.2 기울기 소실과 LSTM
__6.3 LSTM 구현
__6.4 LSTM을 사용한 언어 모델
__6.5 RNNLM 추가 개선
__6.6 정리

CHAPTER 7 RNN을 사용한 문장 생성
__7.1 언어 모델을 사용한 문장 생성
__7.2 seq2seq
__7.3 seq2seq 구현
__7.4 seq2seq 개선
__7.5 seq2seq를 이용하는 애플리케이션
__7.6 정리

CHAPTER 8 어텐션
__8.1 어텐션의 구조
__8.2 어텐션을 갖춘 seq2seq 구현
__8.3 어텐션 평가
__8.4 어텐션에 관한 남은 이야기
__8.5 어텐션 응용
__8.6 정리

APPENDIX A 시그모이드 함수와 tanh 함수의 미분
__A.1 시그모이드 함수
__A.2 tanh 함수
__A.3 정리

APPENDIX B WordNet 맛보기
__B.1 NLTK 설치
__B.2 WordNet에서 동의어 얻기
__B.3 WordNet과 단어 네트워크
__B.4 WordNet을 사용한 의미 유사도

APPENDIX C GRU
__C.1 GRU의 인터페이스
__C.2 GRU의 계산 그래프

한줄 서평

1